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Abstract

Cloud-native services must tolerate node failures, network partitions, and entire-region outages without violating
SLAs. We survey Adaptive Resilience Mechanisms (ARMs) including pod-level checkpointing, self-healing circuits,
and dynamic redundancy—and Continuity Restoration Strategies (CRSs) such as geo-replication with automated DNS
switchover. Then we present an Al-driven framework that fuses real-time telemetry, anomaly detection via LSTM
autoencoders, failure classification, and Infrastructure-as-Code orchestration. A two-region Kubernetes prototype
achieves a Restoration Time Objective (RTO) under 3 minutes and a Continuity Point Objective (CPO) under 5
seconds, improving data continuity by 40 % and availability by 10 %.
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1. Introduction

With the evolution of modern architecture, Enterprises increasingly rely on microservices across hybrid and multi-cloud
environments to meet demands for scalability and agility, yet they remain vulnerable to a spectrum of failures—from
individual node crashes and container evictions to network partitions and full-region outages—that can severely
undermine service availability and data integrity. Traditional resilience practices, such as Kubernetes ReplicaSets or
manual snapshot-and-restore procedures, often result in lengthy recovery times and unacceptable data-loss windows.
To overcome these limitations, we introduce a unified, Al-driven pipeline that continuously ingests real-time telemetry,
applies LSTM-based anomaly detection to surface deviations from learned operational baselines, classifies fault types
via a Random Forest model, and then automatically executes either an Adaptive Resilience Mechanism (e.g., pod-level
checkpoint/restore) or a Continuity Restoration Strategy (e.g., geo-replicated standby provisioning and DNS
switchover) through Infrastructure-as-Code orchestration. Our approach not only shortens Restoration Time Objectives
and minimizes Continuity Point Objectives but also embeds transparent versioning, audit trails, and rich observability
to ensure rapid, repeatable recovery without human intervention.
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2. Unified Approach

Our work synthesizes the below into a unified, Al-driven pipeline that both learn from prior techniques and extends
them by automatically classifying faults and invoking the appropriate resilience or restoration modules.

e High-availability patterns (e.g., active-active and active-passive clusters) establish the foundation for
redundancy but often lack elasticity and fine-grained automation.

e Container checkpoint/restore (CRIU integration in Kubernetes) offers pod-level state capture but typically
requires manual triggers.

e  Geo-replication and DNS-based failover deliver cross-region continuity yet depend on static thresholds for
switchover.

e  Machine-learning approaches for anomaly detection (notably LSTM autoencoders) identify deviations in
operational metrics but have not been coupled to orchestration actions.
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Figure 1. Unification with prior approaches

Building on prior approaches referred above, our framework embodies four Al-enabled modules—predictive analytics
for capacity planning, NLP for backlog scoring, reinforcement learning for CI/CD resource allocation, and autoencoder-
based anomaly detection for compliance—that are seamlessly orchestrated via Infrastructure as Code. Real-time
telemetry flows into an LSTM autoencoder, whose residuals feed a Random Forest classifier that distinguishes node,
network, or region faults. A policy engine then routes execution to either an Adaptive Resilience Mechanism (e.g., pod-
level checkpoint/restore) or a Continuity Restoration Strategy (e.g., warm standby provisioning and DNS switchover).
By aligning each module’s output to well-defined failures, the framework automates recovery workflows, enforces
auditability, and delivers measurable improvements in Restoration Time Objectives (RTO) and Continuity Point
Objectives (CPO).

A. Health Collector

Agents (Prometheus exporters) scrape CPU, memory, disk I/O, error counters every 10 s.
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B. Anomaly Detector (LSTM Autoencoder)

This is the core component in our approach. We transform the time-series data into sequential windows. We have
considered Each input sample will have the shape (n_timesteps, n_features), where we considered our input shape as
(60 s window, 4 metrics). The model consists of encoder and decoder and a reconstruction loss function, typically Mean
Squared Error (MSE), to minimize the difference between the original input and the reconstructed output. Once the
reconstruction error is minimized, our model is ready for Anomaly detection. When new, unseen data (which may
contain anomalies) is fed into the trained model, calculate its reconstruction error. Anomalous instances will likely have
a higher reconstruction error than the normal data the model was trained on. Set an anomaly threshold based on the
distribution of reconstruction errors from your normal training data (e.g., the maximum error observed during training
or a statistical measure like the 95th percentile). Any new input window whose reconstruction error exceeds this
threshold is flagged as an anomaly [1][2]

C. Failure Classifier

The features anomaly duration, restart count, error rate delta map to outputs node fault, network fault,

region_fault[3]

e Anomaly Duration (e.g., how long an issue lasts) is a relevant feature for all fault types, as the duration can
indicate severity or persistence. A short duration might suggest a transient network fault, while a long duration
could point to a persistent node fault or region_fault.

e Restart Count (e.g., how often a service or device reboots) primarily maps to a node fault. Excessive restarts
often signify a local issue with the machine's hardware or software stability.

e Error Rate Delta Map (e.g., changes in the frequency or distribution of errors) is a strong indicator for
network _faults (e.g., sudden spikes in packet loss) and potentially region_faults if a large number of nodes
across a specific geographic area experience a similar increase in error rates simultaneously.

D. Policy Engine
Maps classifier output to ARM or CRS actions. As an example, the rule is - if region_fault then CRS else ARM.

E. Terraform Controller

The system executes Hashicorp Configuration Language (HCL) modules [4]

e ARM Module - This module is described as triggering a CRIU checkpoint and restore on a healthy node. This
suggests a capability for quickly migrating or restoring application states.

e CRS Module - This module scales up a standby Auto Scaling Group (ASG) in a secondary region and updates
DNS weights, likely to use DNS services.

F. DNS Switchover API

It is possible to choose any standard DNS mechanism used within the organization. These APIs are designed for
automation, enabling seamless DevOps workflows and granular control over traffic distribution. For instance, you can
rely on either Amazon Route 53 or IBM NS1 Connect (formerly NS1) which provide RESTful APIs that allow you to
programmatically manage DNS records and adjust global traffic weights.

3. Experimental Setup and Results

A. Configuration, Traffic and Scenarios

We have used Kubernetes 1.23 across couple of regions. It has 3 control plane and 6 worker nodes per region. The
traffic profile is
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200 req/s for 30 min

Ramp to 500 req/s over 10 min

1 000 req/s spike during failover

Table I.
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kubectl

Node Crash | drain+kill- | 5min Az:l:;ﬁres
9 pod PID P y
Shutdown CRS spins

Region Outage | control-plane 10 min standby & DNS
VMs swap

. . Corrupt CRIU . ARM triggers
Disk Corruption snapshot file 3 min pod restart

B. Metrics Collected

RTO - time until 50 % of new requests succeed post-failover

CPO - seconds of state loss before data sync completes

Success Rate: % requests served during transition

Cost Overhead: % increase in cloud services billing for standby resources

4. Cost Analysis

In our Al-driven ARM+CRS framework, the overall cloud bill increases by ~35 % compared to a baseline

“snapshot-only” strategy.

Table II.

Snapshot-Only
CRS

Cost Comparison

300 300

80%

15%

Async Geo-
Replica CRS

120 30

90%

30%

Al-Driven
ARM+CRS
(Ours)

180 5

99%

35%

The cost overhead of 35% is still acceptable considering the benefits which include

2x faster RTO (180 s vs. 300 s)
60x lower CPO (5 s vs. 300 s)

19 % fewer manual interventions (saving ~5 hrs of engineer time per PI)
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When valued at a conservative $150/hr fully loaded rate, 5 hrs saved X $150 = $750 saved per Program Increment
(for a program executed using SAFe), partially offsetting infrastructure costs.

A. Optimization Opportunities

We have used Kubernetes 1.23 across couple of regions. It has 3 control plane and 6 worker nodes per region.

The traffic profile is

Dynamic Standby Scaling - Use serverless containers or spot instances for standby to reduce compute cost by
up to 50 %.[6]

Incremental Checkpointing - Only snapshot changed memory pages, cutting storage cost by ~40 %.

Model Compression & Batch Inference - Quantize LSTM weights and batch anomaly detections to lower
inference cost by 30 %.

Reserved Instances - Commit to 1-year reserved VMs for standby to cut compute billing by ~30 %.

B. Discussion and Research Insights

We have used Kubernetes 1.23 across couple of regions. It has 3 control plane and 6 worker nodes per region. The
traffic profile is

5.

Early vs. Late Detection - LSTM autoencoder detects 92 % of critical anomalies within first 30 s vs. 45 s for
static thresholds.

Fault Classification Gains - Routing node faults through ARM reduce unnecessary full-region CRS activations
by 20 %.

Cost-Resilience Balance - Warm standby at 50 % capacity (Cost 1T 35 %) delivers 2x faster RTO' than cold
start (Cost 1 15 %).

Operational Benefits - [aC modules versions in Git provide audit trails.

Dashboards (Grafana) and Slack alerts reduce mean time to remediation by 25 %.

Conclusion

We present a comprehensive Al-driven ARM+CRS framework that

Classifies failure types with RandomForest[5]

Orchestrates resilience and restoration via Terraform

Detects anomalies via LSTM autoencoders

Validates under realistic load, achieving sub-3 min RTO and sub-5 s CPO

Future work will explore federated learning across clusters, serverless orchestration for lower cost, and integration
with GitOps pipelines for continuous delivery of resilience code.
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